Marine Biology as Big Science

With the development of the Human Genome Project, a heated debate emerged on biology becoming ‘big science’. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world’s oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international ‘Census of Marine Life’ (CoML) making an inventory of life in the world’s oceans. Discussing various aspects of collaboration – including size, internationalisation, research practice, technological developments, application, and public communication – I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different ‘collective ways of knowing’.

While the discovery of space is well under way and almost every piece of land in the world has been discovered and mapped, not much is known about the world’s oceans that cover about 70% of the earth’s surface. Especially life in the depth of the oceans and invisible life such as micro-organisms are still a big mystery. This inspired the ‘Census of Marine Life’ (CoML), a large-scale international research project that took place during the first decade of the new millennium. The collaboration did not only reveal micro-organisms, but also aimed to catalogue all the animals in the world’s oceans, including life in the deep-sea “to assess and explain the diversity, distribution, and abundance of marine life in the oceans – past, present, and future”[1]. This means that the Census of Marine Life is part of a natural history tradition in which collaboration is necessary for the collection of research materials that are globally dispersed[2][3]. While the Human Genome Project (HGP) is often presented as the first large-scale research project in the life sciences, natural history shows that scientific collaboration is hardly new to biology. It is found already in the alliance between science and exploration that set out to map the world and collect and describe its diverse forms of life [4]. However, studies of scientific collaboration pay little attention to these collaborations that collect, identify and catalogue life. If field biology is gradually becoming an important subject of studies into big science [5][9] research into the world’s oceans is not taken into account yet. This paper will therefore explore large-scale research efforts in marine biology further. Does CoML still resemble traditional collaborations to collect life, or have developments in biology research and recent changes in the relation between science and society transformed marine biology research?

Presenting marine biology as big science, the paper will start with an introduction into big science and the discussion on big biology. After an overview of the historical development of marine biology, it will present the Census of Marine Life as a contemporary example of such collaboration, showing transformations in marine biology. By discussing various aspects of collaboration, including size and diversity, internationalisation, research practice, technological developments, the application of research, and public communication, the paper shows how the exploration of life in the oceans started hundreds of years ago with relatively small forms of collaboration that developed over time, increasing in scale and scope while also transforming research practice. Contemporary developments in science and society have become integrated in the traditional natural history style of research, transforming the ways in which life is measured, mapped and modeled. By analyzing marine biology as an example of big science, this paper will not only give an overview of transformations in marine biology as a type of natural history research, but also shine a new light on ‘big biology’ and the ways in which large-scale collaboration in biology can be understood.

New Natural History

According to sociologist of science Arie Rip [60] the ‘new natural sciences’ are still measuring, mapping and modelling the world, as the natural sciences always did, but now in a more sophisticated way, due to developments in information and communication technologies. In line with this argument, my analysis of transformations in marine biology collaborations – which can be seen as a form of natural history – has articulated issues of continuity and change. Continuity can be seen in measuring and mapping which was also the very design of the Census project. For one thing, the scientists named their project ‘Census’: it was about counting and mapping what populates the sea. And during one of the initial meetings of the Census, the project was presented as part of the exploration of the world: “The age of discovery is not over. Indeed, the voyages of discovery open to Charles Darwin, Captain Cook, and the explorers of Linnaeus’ century are very much open to the voyagers of 2000 and beyond” [61]. However, the Census also showed how research has changed substantively, not only through ICT but in interaction with recent scientific, technological and societal developments. Together, these transformations reinvented marine biology as a form of natural history, making up what we may call new natural history.

To start, the scale and scope of marine biology is becoming ever larger. With the participation of more than 80 countries CoML aimed to cover all the worlds’ oceans, broadening the scope of research geographically. As a result, marine biology has basically become a global effort. Next to this globalization, taxonomic research – a vital part of natural history – has transformed fundamentally. Where taxonomists traditionally used morphology to identify species, now a shift took place towards genetic identification, broadening the biological scope of the research, including the animals of the deep-sea and the world of micro-organisms. In addition, the integration and contextualisation of knowledge can be observed. Although identification and cataloguing of species was central, this was increasingly presented as a starting point for the creation of new knowledge through the integration of data. The inventory of ocean life was a tool that could be used in further research on the interaction between species and their environment: “We have to start with an inventory of good quality and you may then really focus on questions to explain relationships within biology” [44]. This increasing focus on ecosystems meant the integration of information about life and geography, which became visible in OBIS and modelling initiatives that contextualised knowledge about life and looked at its development over time. Finally, technological development and new relationships between science and society transformed research practices. The examination of the Census showed how the development of new technologies was part of changing research configurations that brought new visions of life. This could not only be seen in the transformation of taxonomic practices through genetic technologies, but also in the widening of observation through satellite technology and the building of the new information infrastructure OBIS, creating a new outlook on life in the oceans. Developments in the relationship between science and society were reflected in increasing attention to public communication and the application of marine research.

Moreover, the analysis of the Census showed how new natural history comes with its own particular problems. While the process that Rip [60] calls ‘sophistication’ implies that measuring, mapping and modelling practices are now more advanced and maybe even more effective, CoML put some major problems in today’s marine biology forward. For instance, the use of genomics technologies for identifying species did not seem to solve the shortage of taxonomists and gave rise to controversies about ‘proper’ taxonomy. In addition, tensions between an international research scope and national funding structures were an important bottleneck for collaborative research, as was true of the lack of international governance structures geared to stimulating and regulating international ocean research. This caused that the limits of growth in marine biology collaborations became apparent: not all countries participated and not all species were catalogued. And finally, the Census of Marine Life struggled with the integration of all the available research material and the building of models. However, despite of relatively short-term funding cycles, the project also underscored the remarkable resilience of big science [62], as it seeks to extend itself into the future to eventually accomplish its goals.

Can read the complete article here From Darwin to the Census of Marine Life: Marine Biology as Big Science

Citation: Vermeulen N (2013) From Darwin to the Census of Marine Life: Marine Biology as Big Science. PLoS ONE 8(1): e54284. doi:10.1371/journal.pone.0054284

Census of Marine Life (CoML)

Census of Marine Life (CoML)
Can consult here

Source: PLOS ONE, 21/january/2013


Descargar esta información en PDF Download PDF
Share
Etiquetado , , , .Enlace para bookmark : permalink.

Los comentarios están cerrados.